关于作者

亚热带农业生态所桃源站

也给土壤做个DNA检测

地球的皮肤
2016年01月05日
大家最熟知的DNA检验,估计要数亲子鉴定了吧:通过对人体任何组织取样(例如头发、口腔上皮细胞等),根据孩子的基因物质一半来自父亲一半来自母亲的原理,来断定两代人之间的亲缘关系。
人类基因组计划、基因芯片、个性化分子诊断、生物云计算……这些在21世纪第一个十年里吸引无数眼球的热门词汇,都和一个产业颇有渊源——DNA测序。生物技术和信息技术在这片创意新天地里水乳交融。
在业内人士眼里,DNA测序出身高贵,它破解基因密码(即碱基序列),将基因组学与IT技术相结合,发展出一门新兴学科——生物信息学。以它为代表的基因技术,颠覆了传统生物学技术,引领生命科学未来发展潮流。以它为代表的基因工程,在医疗健康、环境保护、新能源、新材料、现代农业等热门领域大显身手。
[caption id="attachment_630" align="aligncenter" width="499"]土壤DNA检测 土壤DNA检测[/caption]

在业外人士眼里,DNA测序足够高科技,堪称“一项新技术衍生出一个新行业”的典范,在短时间内迅速成为国内外VC和PE的宠儿,发展速度之快以至于没有人能准确描绘出它十年后的发展蓝图。在日新月异的DNA测序技术面前,任何预测可能都显得保守?给土壤做DNA检测可以给我们带来什么呢?

生物与环境之间的相互影响,是地球上的生命出现以来就普遍存在的一种自然现象。土壤生态系统是地球上生物多样性最丰富的生境。土壤生物多样性在维持陆地生态系统碳动态和养分循环方面具有重要的作用。土壤中丰富的微生物种类在土壤生态系统中各自行使着独特的功能,在地球物质循环、能量转换、环境与健康等方面发挥着重要作用。传统的土壤微生物研究主要通过分离培养法进行,但由于分离出的微生物种类占土壤微生物种类总数的比例太小,约为0.1%~1%,远远不能满足研究需要。而基于DNA甚至RNA的微生物分子生态学手段则可以使人们避开传统分离培养过程而直接探讨土壤微生物的种群结构及其与环境的关系。利用功能基因,结合现代分子生物学技术,已成为土壤物质循环研究的常用方法。

分子生态学是微生物学的一个领域,利用分子生物学方法研究微生物生态学。比如研究某些基因在环境中的存在和分布。另外,随著聚合酶链式反应(PCR)技术的发展,人们可以快速扩增遗传物质DNA。环境样品中DNA的扩增通常需要一组用于特定微生物的引物,而得到遗传物质的混合物,将其分离,随后进行测序和鉴别。经典的分离办法是通过克隆,将扩增的DNA片段插入到细菌质粒上实现的。较新的方法包括变性梯度凝胶电泳(DGGE),可以更快地得到结果。分子生态学的发展也和DNA芯片的使用紧密相关,该技术可以高通量检测环境中的特定生物或基因。分子生态学中可以使用很多基因进行研究,在分类学角度,最常应用的基因是核糖体小亚基RNA(SSU rRNA)。而功能性基因的研究有助於判断微生物在该环境中的活动。微生物生态学中和分子技术相关的一个重要问题就是,这些生物以主动(进行正常代谢和繁殖)还是被动(静息休眠)的方式存在。

就现在看来,微生物在分子生态学方面主要应用DGGE,FISH,PCR等分子技术研究微生物群落的种群组成和他们的空间分布以及对环境物质和能量的流动的影响。DGGE是一种用来分析微生物特别是细菌的生物多样性的新技术。一般是利用甲酰胺和尿素作为变性剂,温度恒定进行变性梯度凝胶电泳。我们都知道,细菌总DNA中的16S rDNA是比较保守的一段约1.5kb长的DNA序列。利用一对16S通用引物进行PCR扩增,再以产物为模板,扩增其中的约210bp的一段序列进行电泳。因为碱基的组成不同,所以同样长度相同的DNA序列在凝胶的位置不同,合适的条件下,该技术能检测出一个碱基的差异。所以利用该技术我们可以知道一个区域内,微生物(特别是细菌)生物组成的变化,哪些优势种群。针对优势种群,我们可以进一步鉴定其种类,确定其理化性质,再进一步转接到需要该菌种的微生物种群中,改变它的组成(例如利用活性污泥发酵等)更好的解决环境污染问题,提高环境的抗污染能力。FISH是一种基因定位技术,利用该技术我们也可以用改变微生物的组成和它们之间的关系,以及同环境之间的关系。

简而言之,现代生物技术的发展,通过对土壤做DNA检测,使人们能够更好的了解土壤中微生物的分类、发展与功能,深入了解土壤圈物质循环和能量流动的规律和机理,并且能够为人类所用,更好的为人类服务。